non-orthogonality integral
- non-orthogonality integral
- neortogonalumo integralas
statusas T sritis fizika
atitikmenys: angl. non-orthogonality integral
vok. Nichtorthogonalitätsintegral, n
rus. интеграл неортогональности, m
pranc. intégrale de non-orthogonalité, f
Fizikos terminų žodynas : lietuvių, anglų, prancūzų, vokiečių ir rusų kalbomis. – Vilnius : Mokslo ir enciklopedijų leidybos institutas.
Vilius Palenskis, Vytautas Valiukėnas, Valerijonas Žalkauskas, Pranas Juozas Žilinskas.
2007.
Look at other dictionaries:
intégrale de non-orthogonalité — neortogonalumo integralas statusas T sritis fizika atitikmenys: angl. non orthogonality integral vok. Nichtorthogonalitätsintegral, n rus. интеграл неортогональности, m pranc. intégrale de non orthogonalité, f … Fizikos terminų žodynas
Nichtorthogonalitätsintegral — neortogonalumo integralas statusas T sritis fizika atitikmenys: angl. non orthogonality integral vok. Nichtorthogonalitätsintegral, n rus. интеграл неортогональности, m pranc. intégrale de non orthogonalité, f … Fizikos terminų žodynas
neortogonalumo integralas — statusas T sritis fizika atitikmenys: angl. non orthogonality integral vok. Nichtorthogonalitätsintegral, n rus. интеграл неортогональности, m pranc. intégrale de non orthogonalité, f … Fizikos terminų žodynas
интеграл неортогональности — neortogonalumo integralas statusas T sritis fizika atitikmenys: angl. non orthogonality integral vok. Nichtorthogonalitätsintegral, n rus. интеграл неортогональности, m pranc. intégrale de non orthogonalité, f … Fizikos terminų žodynas
Particle in a spherically symmetric potential — In quantum mechanics, the particle in a spherically symmetric potential describes the dynamics of a particle in a potential which has spherical symmetry. The Hamiltonian for such a system has the form:hat{H} = frac{hat{p}^2}{2m 0} + V(r)where m 0 … Wikipedia
VALBOND — In molecular mechanics, VALBOND is a method for computing the angle bending energy that is based on valence bond theory. [Root, D. M.; Landis, C. R.; Cleveland, T. Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular… … Wikipedia
Bessel function — In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli and generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel s differential equation: for an arbitrary real or complex number α (the order of the … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Cylindrical harmonics — In mathematics, the cylindrical harmonics are a set of linearly independent solutions to Laplace s differential equation, , expressed in cylindrical coordinates, ρ (radial coordinate), φ (polar angle), and z (height). Each function Vn(k) is the… … Wikipedia
Weight function — A weight function is a mathematical device used when performing a sum, integral, or average in order to give some elements more weight or influence on the result than other elements in the same set. They occur frequently in statistics and… … Wikipedia